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ABSTRACT

Wavelets can provide a basis set in which the basis functions are con-

structed by dilating and translating a fixed function known as the mother

wavelet. The mother wavelet can be seen as a high pass filter in the frequency

domain. The process of dilating and expanding this high-pass filter can be

seen as altering the frequency range that is "passed" or detected. The pro-

cess of translation moves this high-pass filter throughout the domain, thereby

providing a mechanism to detect the frequencies or scales of information at

every location. This is exactly the type of information that is needed for

effective grid generation. This paper provides motivation to use wavelets for

grid generation in addition to providing the final product: source code for

wavelet-based grid generation.

1This research was supported by the National Aeronautics and Space Administration
under NASA Contract No. NAS1-19480 while the author was in residence at the Institute

for Computer Applications in Science and Engineering (ICASE), NASA Langley Research
Center, Hampton, VA 23681.
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1 Introduction

Wavelet methods are now roughly 10 years old, and there often remains a

large gap between a theoretical wavelet paper and the needs of an applied

scientist. This paper is an attempt to bridge this gap by providing a short

review of wavelet theory followed by a wavelet-based grid generation subrou-

tine. This subroutine has been broken off from a numerical method known

at the Wavelet-Optimized Finite Difference (WOFD) method, see [6], and

can be used as stand-alone unit. Let us begin by reviewing WOFD.

The logic behind WOFD is as follows: i) If one examines the physical

space effect of an adaptive wavelet Galerkin method, one observes a non-

uniform grid finite difference method, see [3]. ii) WOFD attemps to mimic

this physical-space equivalent of a wavelet Galerkin method by using wavelets

to choose a numerical grid and performing the wavelet-equivalent finite differ-

ence method on this grid. iii) By performing all calculations in the physical

space one avoids problems that wavelet Galerkin methods generally have

with boundaries and non-linear terms, see [5], [6].

The grid selection mechanism presented here is very flexible and is inde-

pendent of the physics which might be associated with a particular problem.

Let us begin by defining wavelets in order to.give the reader some idea of the

reasoning which led to the WOFD grid refinement mechanism.

2 Definition of Daubechies-based Wavelets

This section will introduce wavelets and indicate how the theory which is

derived for a continuous independent variable can be reduced to finite di-

mensions.

2.1 The Classical Daubechies Wavelet Theory

To define Daubechies-based wavelets, see [1] for the original work, consider

the two functions 8(x), the scaling function, and _(x), the wavelet. The

scaling function is the solution of the dilation equation,

L-1

¢(x) = v/2 _ hk¢(2x - k), (1)
k=O



where ¢(x) is normalized E_ ¢(x)dx = 1, and the wavelet _(x)is defined in

terms of the scaling function,

L-1

h--0

(2)

One builds an orthonormal basis from ¢(x) and g,(x) by dilating and

translating to get the following functions:

¢_(x) = 2-½¢(2-Jx- k), (3)

and

¢_(z) = 2-½_(2-Jx - k), (4)

where j, k E Z. Here j is the dilation parameter and k is the translation

= {hk}_=o and G = {gk}k=o are related byparameter. The coefficients H L-1 L-1

gk = (--1)khL-k for k = 0,...,L- 1. All wavelet properties are specified

through the parameters H and G. If one's data is defined on a continuous

domain such as .f(x) where x E R is a real number then one uses ¢_¢(x)

and _,]_(x) to perform the wavelet analysis. If, on the other hand, one's

data is defined on a discrete domain such as f(i) where i E Z is an integer

then the data is analyzed, or filtered, with the coefficients H and G. In

either case, the scaling function ¢(x) and its defining coefficients, H, detect

localized low frequency information, i.e., they are low-pass filters (LPF),

and the wavelet _,(x) and its defining coefficients G detect localized high

frequency information, i.e., they are high-pass filters (HPF). Specifically, H

and G are chosen so that dilations and translations of the wavelet, _b_(x), form

an orthonormal basis of L2(R) and so that ¢(x) has M vanishing moments

which determines the accuracv. In other words. _,i(x) will satisfy

•= (.5)
--OO

where 6kl is the Kronecker delta function, and the accuracy is specified by

requiring that g,(x) = i,°(x) satisfy

/__ g,(x)xmdx = O, (6)
oo



for m = 0, ..., M - 1. Under the conditions of the previous two equations, for

any function f(x) E L2(R) there exists a set {djk} such that

f(x) = E E
jEZ kEZ

(7)

where

Fdjk = f(x)g,_(x)dx. (8)
oo

For Daubechies wavelets the number of coefficients in H and G, or the

length of the filters H and G, denoted by L, is related to the number of

vanishing moments M by 2M = L. The coefficients H needed to define com-

pactly supported wavelets with a higher degree of regularity can be found in

[1]. As is expected, the regularity increases with the support of the wavelet.
The usual notation to denote a Daubechies-based wavelet defined by coeffi-

cients H of length L is DE.

It, is usual to let the spaces spanned by ¢_(x) and _/,_(x)over the parameter

k, with j fixed, be denoted by 1_ and !_l,_-respectively,

spa (9)keZ

_t'_-= span. ©jk(x)"
kEZ '

The spaces I¢) and Wj are related by,

(10)

... c V1 c t'b c 1,21 c ..., (11)

and

= b+' 0 V_J-t-I" (12)

The previously stated condition that the wavelets form an orthonormal

basis of L2(R) can now be written as,

L2(R) = (_ Wj. (13)
jez



2.2 Restriction to Finite Dimensions

Of course, infinite sums are meaningless when one begins to implement

wavelet analysis on a computer where there is always a largest scale, a small-

est scale, as well as boundaries. That is, one must limit the range of the scale

parameter j and the location parameter k. The location parameter k can be

limited by, say, imposing periodic boundary conditions which would require

that k also be periodic or by building special scaling functions and wavelets

at the boundaries.

Consider now the scale parameter j. As stated above, the wavelet ex-

pansion is complete in the sense that an arbitrary function with finite energy

can be represented by 'summing up' the orthogonal subspaces Wj which con-

tain frequency components related to the parameter j: L2(R) = _jez Wj.

Therefore, any f(x-) E L2(R) can be written as,

f(x) = E E d_C,_(x).
jEz kEZ

In this expansion, functions with arbitrarily small-scale structures can be

represented. In practice, however, there is a limit to how small the smallest

structure can be. This would depend, for example, on how fine the grid is in

a numerical computation scenario or perhaps what the sampling frequency

is in a signal processing scenario. Therefore, on a computer an expansion

would take place in a space such as,

(14)

and would appear as,

J

= J J
kEZ j=l kEZ

(15)

where, again, d_ = f_f(x)g,_(x), and s k = E_f(x)¢_(x). In this expan-

sion, scale j = 0 is arbitrarily chosen as the finest scale that is needed, and

scale J would be the scale at which a kind of local average, ¢_(x), provides

sufficient large scale information.



3 From Wavelets to Grid Generation

The idea of using wavelets to generate numerical grids began with the obser-

vation in [3] that the essence of an adaptive wavelet-Galerkin method is noth-

ing more than a finite difference method with grid refinement. So, instead of

letting the magnitude of wavelet coefficients choose which basis functions to

use in a Galerkin approach, let the same coefficients choose which grid points

to use and then think of the wavelet method in a collocation sense.

In other words, suppose a calculation begins with N evenly-spaced sam-

ples of a function f and that some quadrature method produces N scaling

function coefficients on the finest scale denoted by _. If the spacing between

adjacent values in the vector f is Ax then this is also the physical-space

resolution of any calculation done in _. Now, decompose _ once to get

P0 = V1 _ Wl. Similarly speaking, the physical space resolution of _] is

2Ax and the refinement from the 2Ax physical-space resolution to the Ax

physical-space resolution is dictated by the wavelet coefficients in W1. This

is the reasoning which led to WOFD and to the following subroutine which is

at the heart of WOFD. The remainder of the paper is concerned with giving

the reader an idea of how the WOFD grid refinement software works.

4 Software Implementation

The philosophy of the this paper is to get the reader to first try the software

and once the reader is convinced that it is a reliable grid generator, then move

onto the theory. So, let us commence with an examination of the included

WOFD grid generator.

The main subroutine newgr.f performs two major functions. The lines

of code from line 9 to line 13 perform the wavelet analysis producing the

wavelet coefficients of the input function fi, and from line 15 to line 43 the

numerical grid is generated based on these wavelet coefficients.

4.1 Explanation of Subroutines, line by line

This subsection will explain the grid generation subroutines almost line by
line.
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4.1.1 Generating the Wavelet Coefficients: lines 9-13

To illustrate, assume that the user has determined that 8 is the maximum

desired ratio between the maximum Ax and the minimum Ax. As noted

above, this corresponds to 3 wavelet decompositions. As above, let V0 denote

the subspace spanned by scaling functions on the finest scale. One wavelet

decomposition produces the division of Vo into Vx and WI: V0 = W1 • V1.

Similarly, three wavelet decompositions produces, V0 = W1 • W2 • 14/3 O V3.

Each of these wavelet decompositions is performed by the subroutine filter./.

The input to filter.f is the variable Extdata which contains the scaling function

coefficients for subspace Vi and the output variables of filter.fare the variables

data and HPF which contain the coefficients for the subspaces V,+I and Wi+l,

respectively. The variable is named Extdata because the coefficients of Vi have

been 'extended' to reflect the boundary conditions. In this version of the

program, the data is extended by adding constant scaling function coefficient

values to the ends of the vector data by the routine constext.f. Note, if one

desires periodic boundary conditions then one 'wraps' the scaling function

coefficients around such that one extends the vector data by returning to the

beginning of the same vector. Likewise, if one wants a smoother extension

of data then one can write a routine which extends linearly or by some other

higher order polynomial.

4.1.2 Generating the Grid: lines 15-43

The lines of code from 16 to 20 add the grid points which are referred to as

the base grid. That is, these points are evenly-spaced and depend only on the

number of wavelet decompositions one has chosen. For example, if N = 128

and Nd = 3 then the base grid will consist of 16 = 128/23 evenly-spaced

points. If the input function fi is smooth with respect to the threshold, th,

then the output grid xo could very well be composed only of the base grid.
The lines of code from 21 to 42 add the wavelet refinement to the base grid.

Using the standard wavelet notation for the example with 3 decompositions,

1/0 = M_] @ lk_ @ I4,'.3_2 1/_, the base grid corresponds to the scaling function

subspace I/_ in which all the scaling functions are used. If the spacing between

grid points in 1_0 is Ax then the spacing between grid points in Va will be

8Ax. The addition of the wavelets in 14/3 which have coefficients larger in

magnitude than the threshold th will refine the grid to a spacing of 4Ax



in these large coefficient regions. Likewise, adding 14_ refines to 2Ax and

adding W1 refines to the finest scale of Ax. Testing the magnitude of the

wavelet coefficients occurs on line 32 of the code. The variable ,flagpoint is

used with iw in order to include a grid point zi(ipnt) if, say, 2/3 of the wavelet

coefficients in the region around zi(ipn 0 are large. This mechanism adds a

kind of 'softness' to the grid selection mechanism and appears to work very

well when iw = I. Line 38 is where the new grid :co is constructed. Lines 44

and 45 simply add the right-hand boundary grid point and function value.

4.1.3 The input and output variables

Input Variables

xi = The evenly-spaced grid point values.

fi = The evenly-spaced samples of the function which is to be analyzed.

fi(1) = value at left-hand boundary, fi(N+l) = value at right-hand

boundary. If boundary conditions are periodic, fi(1) = fi(N+l).

L = Defines which wavelet is used. For Daubechies 4, L=4.

• N = The number of points in fi minus 1. N is a power of 2.

th = Threshold to determine which grid points are used. If th i 0 then

all grid points are used. If th = large number, perhaps 10, then only

the grid points on the 'coarsest' grid are used.

Nd = Number of wavelet decompositions, e.g., if Nd = 3, then the ratio
of the maximum Ax to the minimum Ax is 8 = 23.

iw = Width of wavelet refinement stencil. If iw = 1, then the magni-
tude of wavelet coefficients are checked at three locations from -iw to

iw or at the locations -1, 0, 1 in order to determine if the grid point

at location 0 should be used. So that.if one has a hyperbolic system,

or traveling waves, then if iw > 2 one can add grid points by looking

'backwards' and 'forwards' for a perturbation which might move into

the region currently being examined. This is a kind of preparation for

the future evolution of the system at hand.



Output Variables

xo = The new wavelet-chosen grid. Note that the grid points on the

boundaries are always used. That is, xo(1) = xi(1) and xo(No) =

xi(N+l).

• fo = The function values on the new wavelet-chosen grid.

No = The number of grid points in the new grid. Note that whereas

'No' counts every grid point, the input variable 'N' does not include

the last point on the right hand boundary. This is done to facilitate

the use with periodic as well as non-periodic boundary conditions.

4.2 The Four Subroutines

The following four subroutines provide a stand-alone 1 dimensional WOFD

grid generation package.

4.2.1 Wavelet Analysis and Select Grid: newgr.f

This is the main subroutine which will be called by the user created driver

program.

1 subroutine newgr(xi,fi,L,N,th,Nd,iw,xo,fo,No)

2 parameter(Nmax = 260, Lmax = 8, Ndmax = 8)

3 real xi(N max),fi( Nmax ),xo(Nmax),fo(Nmax) _h(Lmax),g(Lmax)

4 real HPF(Nmax/2+Lmax,Ndmax),data(Nmax),th,Extdata(Nmax+Lmax)

5 call getcoef(L,h,g)

6 do i = 1,Nmax

7 data(i) = fi(i)
8 enddo

9 do idecomp = 1, Nd

10 Ndim = N/(2**(idecomp-1))

11 call constext(data,Ndim,L,Extdata)

12 call filter(Extdata,h,g,Ndim,L,data,HPF(1,idecomp))

13 enddo

14 igrid = 0

15 do 10, ipnt = 1,N

16 if( abs(mod(ipnt-l,2**(Nd))) .LT..00001 ) then



17igrid = igrid + 1
18xo(igrid) = xi(ipnt)

19 fo(igrid) = fi(ipnt)

20 endif

21 do 20, idecomp = 1,Nd

22 nl = abs(ipnt - 2**(idecomp-1) - 1)

23 n2 = 2**(idecomp)

24 if (abs(mod(nl,n2)) .LT..00001 ) then

2.5 indexl = l+nint(real(nl)/real(n2))

26 iflagpoint = 0
27 do iwiden = -iw, iw

28 iindex = index1 + iwiden

29 if(iindex.LE. 1.OR.iindex.GE.N/(2**(idecomp)))then
30 iindex = index1

31 endif

32 if (abs(HPF(iindex,idecomp)).GT.th)then

33 iflagpoint = iflagpoint + 1

34 endif

35 enddo

36 if (iflagpoint .GE. iw+l) then

37 igrid = igrid + 1

38 xo(igrid) = xi(ipnt)

39 fo(igrid) = fi(ipnt)

40 endif

41 endif

42 20 continue

43 10 continue

44 xo(igrid+l) = xi(N+l)

45 fo(igrid+l) = fi(N+l)

46 No = igrid+l

47 return

48 end

4.2.2 Get Daubechies Wavelet Coefficients: getcoef.f

This subroutine is called by newgr.fand its only function is to get the wavelet

coefficients. Included here are the numbers only for the D4 wavelet. Other

wavelet coefficients can be added by the user. The numerical values for the

coefficients h(:) in the following subroutine came from [1].
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1 subroutine getcoef(L,h,g)

2 parameter (Lmax = 8)

•3 real h(Lmax), g(Lmax)

4 h(1) = .482962913145

.5 h(2) = .836516.303738

6 h(3) = .224143868042

7 h(4) = -.129409522551

8 do i = 1,L

9 h(i) = h(i)/(sqrt(2.0))
10 enddo

11 do i = 1,L

12 g(i) = (-1)**(i-1) * h(L- i + 1)
13 enddo

14 return

15 end

4.2.3 Apply Wavelet Filter: filter.f

This subroutine does the actual wavelet filtering by dividing Extdata into its high

and low components.

1 subroutine filter( Ext dat a,h,g, N, L ,low,high )

2 parameter (Nmax = 260,Lmax = 8)

3 real low(Nmax/2+Lmax), high(Nmax/2+Lmax)

4 real Extdata(Nmax+Lmax), h(Lmax), g(Lmax)

5 do i = 1, Nmax/2+Lmax

6 low(i) = 0.0

7 high(i)= 0.0
8 enddo

9 do i = 1, N/2 + (L-2)/2

10 do j = 1,L

11 ij = 2'(i-1) + j - (L-2)

12 low(i) = low(i) + h(j) * Extdata(ij+2)

13 high(i) = high(i) + g(j) * Extdata(ij+2)
14 enddo

15 enddo

16 return

17 end

I0



4.2.4 Apply Boundary Conditions: constext.f

This routine takes care of the boundary conditions by extending the scaling

function coefficients in an appropriate way. The routine provided here extends
with constant values. The user can define other routines for whatever boundary

conditions are needed.

1 subroutine constext(data,N,L,Extdata)

2 parameter (Nmax = 260,Lmax = 8)

3 real data(Nmax), Extdata(Nmax+Lmax)

4doi=l,N

5 Extdata(L/2+i-1) = data(i)
6 enddo

7doi = 1, L-3

8 Extdata(L/2-i) = data(l)
9 enddo

10doi= 1, L-1

11 Extdata(N+L/2+i- 1)=data(N)

12 enddo

13 return

14 end

5 Doubling the Grid Density

Note that the software included here takes a fine grid, lJ_, and chooses from

1{_ a subset of points from l&] • W2 ® W3 • t_ to obtain a numerical grid.

It is possible that during a numerical simulation that even the finest grid

Ax in to is not fine enough and that a grid spacing Ax/2 is needed. This

is possible by adding to 170 the refinement W0 to get V-1 = t_ • W0. In the

code this can be accomplished by first testing the magnitude of the wavelet

coefficients in the subspace W1 by adding a test statement similar to line 32

in which the magnitude of the numbers in HPF(:,I), corresponding to W1, are

tested against a second threshold number. For example, if th=.O01 then one

might decide to double the grid density if magnitude of HPF(:,I)> .01 (The.

reader should experiment with these numbers). If this test is true then exit

newgr.f and double of the grid density of zi by interpolation thereby making

N become 2N followed by another call to newgr.f. Note that it is necessary

to double the grid before the data becomes too 'rough'. Once numerical

oscillation has begun, it is too late. You must make your threshold numbers

11



sensitive enough to 'see' to high frequency regions coming and refine ahead

of time. This type of intuition is easy to develop with a little practice.

6 2 Dimensional Examples

Applying this grid selection mechanism in higher dimensions is straightfor-

ward. For example, if one's data, perhaps pressure, is stored in a 2 dimen-

sional array, then apply the 1 dimensional wavelet grid selection mechanism

to each column and row. This mechanism will tell the user where grid points

are needed. The user must then choose a set of grid points which contains

the wavelet-generated set. Choosing a given subset of points from the set

recommended by the wavelet analysis will depend on the application and the

numerical method used, but if the set does nc)t contain the wavelet-generated

set of points, the user might find that there are features which are left unre-

solved.

The following subsections will illustrate the application of wavelets to

choose grids. The first example comes from the original WOFD and the

second example comes from an adaptive spectral method named WOFD2.

6.1 The Original WOFD

The original WOFD is spatially 4th-order accurate. The underlying grid at

each level of refinement is a uniform grid, see Figures (1) and (2). Note that

the grid has no dangling nodes. That is, differentiation occurs through any

neighboring 5 points. At the boundary, the stencil is also five points but one

sided. See [3] and [6] for details.

6.2 An Adaptive Spectral Method

The examples given in Figures (3) and (4) come from an adaptive spectral

method named WOFD2, see [7]. WOFD2 adjusts the local grid density and

the order of the local differentiation stencil based on wavelet analysis. The

order of the differentiation operators could be as high as 32 or as low as

4. Orders above 4 require that the grid near the boundary be chebyshev in

structure in order to implement high order boundary conditions. In other

12



Figure 1" A domainwhich containsa high gradient flamefront impinging on
a Gaussianpulse.
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Figure 2: The grid selected by wavelets for a high gradient region impinging

on a pulse.
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Figure 3: Gaussian pulse analyzed with wavelets in an adaptive spectral

method.

words, if one wants to implement, say, 20th order boundary conditions then

one must utilize a chebyshev grid near the boundary in order to control the

Runge phenomenon which occurs with evenly-space grid distributions. To

apply wavelet-based grid generation on Chebyshev grids, zi = cos(0i), then

one applies the above based grid generation routine to the dependent variable

f defined on the independent variable 0i: f(6i). The following plots illustrate

the application of WOFD2 in 2D to a Gaussian pulse entering the domain at

one of the corners. Note that, as above, there are no dangling nodes. Again,

the details of the application of wavelets to the adaptive spectral method

WOFD2 can be found in [7].

6.3 Possible Applications to Finite Elements

The WOFD grid refinement mechanism and the software included in this

paper can be applied to any flow in which one needs grid. The obvious

extension would be to generate triangular grids for finite element analysis.

In such an application one does not have an underlying fine grid at hand, but

one can easily interpolate local data to obtain a local uniform grid. That is,

wavelets are ideal for analyzing a domain and telling the user at what scale

14
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Figure 4: An adaptive Chebyshev grid generated by wavelets for an adaptive

spectral method.

and where various information in the domain is contained. This is the type

of information which is needed in order to choose grids, whether the grids

are triangular or Cartesian.

7 Conclusion

Hopefully it has been illustrated within this paper that wavelets, with their

ability to detect energy of flow variables at various scales and locations

throughout a domain, provide a very natural mechanism for grid selection.

In fact, this wavelet-based grid selection mechanism can be used to control

the maximum error, L_ error, throughout the domain. One can simply set

the parameter "th", as described above, to an acceptable error, and one will

find at the end of the calculation that the L_ error will be of the same order

of magnitude.

In addition, the underlying grid structure need not be uniform, as in Fig-

ure (2), but can be Chebyshev as in Figure (4), or any other grid structure

as long as one can interpolate to a uniform grid for the grid selection mech-

anism. After the grid has been selected from the uniform set, one simply

15



interpolates back to their desired grid structure.

Finally, this paper contains Fortran source code. It appears that it takes

a very long time for a researcher who is not familiar with wavelets to, first,

learn the theory, and, second, write software which works. Hopefully, this

software will prove useful.
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